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Enhanced sedimentation in narrow tilted channels 
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(Received 6 May 1980 and in revised form 29 October 1980) 

The analysis of Acrivos & Herbolzheimer (1979) is extended to  describe the sedimen- 
tation of dilute suspensions in tilted two-dimensional channels in which the spacing 
between the plates is small compared with their length. The theory assumes that the 
flow is laminar and that the suspension consists of monodisperse spherical beads 
having small particle Reynolds number. Expressions for the flow fields in the clear- 
fluid region and in the suspension, as well as for the location of the interface separating 
these two regions, are obtained asymptotically in the limit of A 1 with RA-4 < 1, 
where R and A are as defined in the previous work. The present analysis differs from 
that given earlier in that the aspect ratio, i.e. the ratio of the height of the suspension 
to  the channel width, is now taken to be O(A4) rather than O( 1)  as was the case before. 
Under these conditions, the solution of the time-dependent equations leads to the 
surprising prediction that the clear-fluid layer which forms beneath the downward- 
facing plate attains a steady shape only along the lower portion of the channel while, 
in contrast, its thickness increases with time for locations along the channel that  are 
above some critical point. Because of this transient behaviour, the well-known 
Ponder-Nakamura-Kuroda (PNK) formula overestimates the rate a t  which the top 
of the suspension region falls with time; however, the PNK results for the volumetric 
settling rate still hold under the conditions considered in this paper. It is shown that 
this discontinuity in the interface shape can be suppressed in continuous settling 
systems but only if the feed and withdrawal locations are chosen properly. 

Batch sedimentation experiments were conducted in a channel with parallel flat 
walls under the following sets of conditions: Ho/b  E 90,5" < 8 ,< 45", 0.01 < co < 0-025, 
1 .7  x lo7 c A < 3.5 x lo7, and 1.8 c R c 2.1, where 0 is the angle of inclination of the 
vessel from the vertical, and co is the initial volume fraction of solids in the suspension. 
The experimental observations were found to be in excellent agreement with the 
theoretical predictions. 

1. Introduction 
Boycott (1920) was the first to report that, if a suspension is left to stand in a narrow 

tube, the particles sediment much faster if the tube is inclined than when it is vertical. 
A detailed description of the 'Boycott effect ' as well as a summary of the earlier papers 
on the subject were presented in a recent communication (Acrivos &, Herbolzheimer 
1979, henceforth referred to  as I). 

I n  addition to being of interest in its own right, the ' Boycott effect' has obvious 

t Present address : Chemical Engineering, California Institute of Technology, Pasadena, 
CA 91 126. 
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practical potential for greatly increasing the efficiency of gravity-settling operations 
used in industry. Before this potential can be realized, however, it is important that  
a quantitative theory be developed for describing the convective phenomena that 
arise during this process. Such a theory was presented in I for the case of two-dimen- 
sional flows in vessels having O( 1) aspect ratios. This theory is extended in the present 
paper to the case of settling in tilted channels for which the aspect ratio, i.e. the ratio 
of the height of the suspension to  the spacing between the plates, is very large. Such 
vessels are of greater interest from a practical standpoint because they correspond to  
the largest enhancement of the settling rate. 

As in I, the suspensions considered are composed of identical spheres which are 
small enough so that the particle Reynolds number - based on the velocity of the 
particles relative to that of the surrounding fluid - is much less than unity. Under 
these conditions, the expression for the instantaneous volumetric rate a t  which 
particle-free fluid is fmmed is given by equation (2.10) of I which verifies the corres- 
ponding prediction obtained by Ponder (1925) and independently by Nakamura & 
Kuroda (1937) (henceforth denoted by PNK) using an ad hoc argument. This result 
is independent of the details of the flow. It was further shown in I that, aside from the 
geometry of the vessel, a complete description of the settling process is governed by 
two dimensionless parameters: R, a sedimentation Reynolds number, and A, the 
ratio of a sedimentation Grashof number to R, 

where I is a characteristic length of the macroscale motion and vo = uo f (co )  is the 
average vertical settling velocity of a sphere in the suspension if c, the volume fraction 
of solids, equals its initial value, co. The Stokes settling velocity of the spheres is 
given by 

(1.2) 

and f ( c )  is a monotonically decreasing function which accounts for interactions be- 
tween particles, being unity for c = 0. The pure fluid viscosity is p, its density is pf, 
p,. is the density of the spheres, a is their radius, and g is the gravitational constant. 
Since, in most cases of interest, A is 0(106)-O(lOs), while R is only O(1)-0(102), an 
asymptotic analysis for determining the details of the motion was developed in I by 
taking A 9 1 with RA-4 6 O( 1). It was shown that the region of pure fluid beneath 
the downward-facing surface of the vessel forms a thin rapidly flowing layer whose 
thickness scales as A-8 and in which the longitudinal velocity scales as AS. For 
H / b  < As, with H and b being, respectively, the height of the suspension md the 
spacing between the plates of the channel, this clear-fluid layer is much thinner than 
b and attains a steady shape in a time interval that  is small compared with the charac- 
teristic time for settling of the suspension. Hence, all of the pure fluid which is formed 
accumulates above the essentially horizontal interface a t  the top of the suspension 
region, and, ass shown in I, the PNK theory correctly predicts the rate of downward 

uo = sa 2 2 P s - P f g ,  - 
I(. 
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descent of this interface, with an error of O(R-3). For the common geometry of parallel 
flat plates, we therefore obtain that 

dH H - = - vo (1 + sin 6 )  + O(R-*), 
at 

where 6 is the angle of inclination of the channel from the vertical. 
In  contrast, when H / b  N O ( h i )  the clear-fluid layer beneath the downward-facing 

surface occupies an appreciable portion of the channel, and the analysis of I no longer 
holds. Surprisingly enough, this important case has not received any attention in the 
past even though (1.3) would suggest that a very large enhancement in the settling 
rate could be achieved under these conditions. For example, a very high capacity 
settling device could be produced by placing many closely spaced parallel plates within 
a larger tank so that the aspect ratio of each cell would be very large. 

In  the present paper we shall extend our earlier work and shall develop an asymptotic 
solution to the flow equations under the same set of conditions as in I except that H / b  
will be taken as O(R:). In  order to  clarify the presentation, we shall restrict our atten- 
tion to  the sedimentation of dilute suspensions in two-dimensional channels having 
parallel flat walls. The extensim of our analysis to  more general geometries and to 
non-dilute suspensions is straightforward (Herbolzheimer 1980). I n  the next section 
we shall formulate the mathematical problem and shall obtain expressions for the 
velocity profile while, in $3,  the equation governing the time-dependent interface 
position will be solved analytically for the case of batch sedimentation. It will be 
shown that, surprisingly, the clear-fluid layer which forms beneath the downward- 
facing plate attains a steady shape only along the lower portion of the channel while, 
in contrast, its thickness increases with time for locations along the channel that are 
above some critical point. In  other words, when viewed as a function of distance 
along the channel, the thickness of the clear-fluid layer becomes discontinuous. Under 
these conditions the PNK theory accurately predicts the volumetric settling rate, but 
the corresponding result for the motion of the top of the suspension, i.e. (1.3), no longer 
holds. It is shown in $4, however, that the discontinuous behaviour of the clear-fluid 
layer can be suppressed in continuous settling systems if the feed and withdrawal are 
chosen properly. Finally, it will be seen that the analytical predictions compare 
favourably with the results of batch settling experiments which were performed in 
our laboratory. 

2. General formulation 
As was discussed in § 2 of I, there are three regions to consider: (1) the particle-free 

layer; (2)  the suspension region where c = co throughout the settling process;? and 
(3) the sediment layer along the upward-facing surface where c rises from co to its 
maximum possible value. In  contrast to the case of an O( 1 )  aspect ratio, the thickness 
of the sediment layer may become an appreciable fraction of the channel width when 
the spacing between the plates is small; nevertheless, its presence will be neglected in 
order to simplify the analysis. Although this approximation is accurate in the dilute 

t The use of c f c,, wltllin the suspension is justified if the latter is initially of uniform con- 
ccntration and if the effect of particle interactions on the settling velocity of the spheres relative 
to  the bulk arcrage c ~ l o c i t y  clependr only on the local concentration. 



488 E .  Herbolzheimer and A .  Acrivos 

FIGURE 1. Expanded view showing the definition of the variables used in 
the analysis of the motion. 

limit (cf. Herbolzheimer 1980), it  could lead, in general, to quantitative differences 
between theory and experiments; however, the important qualitative features of the 
flow t o  be described below should apply to all situations. 

We begin with the dimensionless averaged equations of motion and of continuity, 
i.e. equations (2.2) and (3.1) of I, which for both the pure fluid and suspension regions 
are 

and v.u = 0, (2.2) 

where the O(co) deviations of the suspension viscosity and of its density in the inertia 
terms from the corresponding pure-fluid values have been neglected in the dilute limit. 
In (2.1) and (2.2), u is the dimensionless average velocity of the suspension, V P  is 
the dimensionless pressure gradient minus the hydrostatic pressure gradient due to 
suspension with volume fraction of solids co, and e is the unit vector in the direction 
of gravity. As in I, the equations have been rendered dimensionless using, respectively, 
Ho (the initial height of the suspension), vo, Ho/vo and pvo/H0 as the characteristic 
length, velocity, time, and pressure. Also, R and A are as defined in ( 1 . 1 )  except that 
H, replaces 1. Finally, with these definitions, the dimensionless average particle 
velocity equals u + e.  

We shall seek an asymptotic solution to these equations in the limit of A 3 CQ 

for settling between parallel plates. We define a co-ordinate system with x directed 
along the downward-facing plate of the channel and y perpendicular to it (see figure 1)  
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and with u and v the corresponding velocity components. With b / H ,  N O(A-t), the 
length scale in the y direction is O(R-4) in both the suspension and the pure fluid layers. 
Hence, on account of (2.1), the large bouyancy force in the pure-fluid layer must be 
balanced by the viscous forces, from which it follows that u N O(A4). In  turn, this 
implies from continuity that v - O( 1). Hence, we define the stretched variables 

y" = A b ~ / b ,  ii = A-&, 5 = V, P = P / A ,  (2.3) 

where 6 s A*b/H,, 

is an O( 1) quantity by definition. Also, we let g = 8(x, t) be the equation for the inter- 
face between the pure fluid and the suspension. In terms of the stretched variables, 
the momentum and continuity equations take then the familiar form of lubrication 
theory, 

and 

( 2 . 4 ~ )  

(2.4 b )  

( 2 . 4 ~ )  

These equations apply everywhere in the flow field except, of course, in small singular 
regions near the ends of the suspension where the characteristic length scale in the x 
direction is O(R-*) so that derivatives in the x direction must also be retained. These 
regions have a small effect on the flow over most of the length of the channel, however, 
and can be neglected to leading order. For the sake of simplicity, let us restrict our 
attention to the case R N O(1) so that the inertia terms, of order RR-i, may also be 
neglected to leading order. 

The y-momentum balance ( 2 . 4 b )  together with the normal stress balance at  fj = 8 
shows that P is independent of y" to leading order. Hence, (2.4a) can be readily 
integrated to yield, after applying the boundary conditions of no-slip at the walls and 
continuity of velocity and shear stress at  y" = 8, 

- 6Qy"( 1 - y") -9[(8+ 4) y" - 81 (1 -8)ZD cos 8, u=6 
in the pure-fluid layer (i.e. for 0 < y" < 8), and 

- 69 u = - g (  1 - y") - (1  -8) [(# - 8)g-  41 8 2 6 2  cos 8,  
b 

(2.5a) 

(2.5b) 

in the suspension layer (i.e. for 
any plane of constant x and must satisfy the volume conservation condition 

< y" < 1). &(x, t )  is the net flow rate of material across 

-= t ,  
ax F(x, t )  - V ( z ,  t ) ,  

where F(x,t) is the dimensionless flux at  which new suspension is added into the 
channel at position x and V ( x ,  t )  is the dimensionless flux at  which pure fluid is removed 
through the upper wall. Of course, if the concentration distribution and stretchings 
employed in the present analysis are to remain valid, this new suspension must be 
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added directly to the suspension region with a velocity of O( 1) .  Under these conditions, 
the addition ofthe feed can be incorporated into the analysis either by modifying the 
continuityequation ( 2 . 4 ~ ) )  to include an O( 1) source term actingonly in the suspension, 
or by changing the boundary conditions to allow for the flow of an O( 1) flux of suspen- 
sion across the upward-facing wall. As will become apparent below, however, to  
leading order these modifications affect only the profile for v" in the suspension region, 
a quantity which is unimportant to the present degree of approximation. Hence, for 
the present purposes, the details of the feed a t  any value of x are unimportant and 
(2.5) applies for continuous as well as for batch systems. I n  general, concentrated 
sediment may also be removed a t  points along the channel but since this flux makes 
an O(c,) contribution to (2.6) it can beneglected to the present degree of approximation. 

To complete the description of the flow field, it is necessary to determine the thick- 
ness of the clear-fluid layer, 8(x, t ) ,  by solving 

A-Ab-+b-- -as" - a  {/:Gdfj]+ V(x,t) = sin0, 
at ax 

which results from applying the kinematic condition at  the pure-fluid/suspension 
interface (cf. equation (3.4b) of I) and then integrating the continuity equation ( 2 . 4 ~ )  
to evaluate 6 a t  f j  = 8. Finally, on account of (2.5a),  

The use of pseudo-steady velocity profiles in deriving (2.7) is justified because the 
time derivatives in the momentum equation are O(Rh-3)  and, therefore, play a negli- 
gible role relative to the other terms in (2.7).  

When considered as mass balance over a thin slice of the clear-fluid layer (2.7) 
shows that, to leading order, a flux of fluid with magnitude sin 6' crosses the interface 
into the clear-fluid layer and that this flux must be balanced by the accumulation in 
the layer (i.e. A%a6"/at), by the rate of change with respect to x of the net flow rate 
of fluid along the clear-fluid layer, or by a combination of these two effects. We shall 
investigate the solution of (2.7) for the two important cases of batch sedimentation 
and of steady-state continuous sedimentation. 

3. Batch sedimentation 
Since material is neither added to nor removed from the vessel during batch 

sedimentation, F(x ,  t ) ,  V ( x ,  t )  and Q(x, t )  all vanish and the equation governing the 

as" a 
a7 ag 

interface shape becomes 
-+64--(6"3(1-8)9) = 1,  

where 7 z Rjt sin 0/6 and y E 192 x tan 6'/h3. To begin with, let us consider the possi- 
bility that, as was found in I for the case when the aspect ratio is O ( l ) ,  the interface 
along the clear-fluid layer attains a steady shape within a short initial time period, 
after which the only unsteadiness in the process is due to the vertical motion of the 
horizontal interface on top of the suspension. Integrating the steady form of (3.1) and 
solving for 8, we obtain 

(3.2) F(t;) = 4[1 f ( l -@)t] .  
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FIGURE 2. The characteristic map for determining the time-dependent behaviour of the thickness 
of the clear-fluid layer, a(%, t ) ,  in vessels with large aspect ratios. The dashed line shows the 
position of the discontinuity in t,he layer thickness as a function of time. 

5 

Surprisingly, according to (3.2), real solutions for the steady interface shape exist only 
if 5 < 1 ,  i.e. for 

6 3  
x < x  = (3.3) ‘- 192tanO’ 

thereby implying that the interface may attain a steady shape only for x < x, while 
remaining transient for x > x,. To determine whether such behaviour is possible we 
shall examine the solution of the time-dependent equation (3.1) using the method of 
characteristics. 

Let us consider then the solution of (3.1) subject to the typical initial condition 
6({, 0) = 0, which corresponds to the vessel having been filled initially completely with 
suspension, and the boundary condition 6(0,7) = 0 which is justified by matching the 
flow in the clear-fluid layer to that in the singular region at  the end of the channel 
(cf. Cj 3 of I) .  For this case, we find that 8 = 7 along all those characteristics crossing 
the { axis and that the shape of the characteristic with intercept 5 = c0 is given by 

6 = 7 = - (1 - (5-  {0)’J)4] for 7 < 4 (3.4a) 

and 8 = 7 = + (1 - (5- 50,tS)J] for 7 2 4. (3.4b) 

Similarly, for the characteristic crossing the 7 axis a t  70, we find 

$ = 7 - - 7  0 -  - 1 1 - ( 1 - { 4 ) 4 ] ,  2 [  (3.5) 

which is identical to the characteristic passing through the origin except for a shift in 
7 equal to the value of the 7 intercept. 

The time-dependent behaviour of the interface position can now be ascertained 
from the characteristic diagram shown in figure 2 .  At a given value of 5, the thickness 
of the clear-fluid layer increases linearly with time until that characteristic is reached 
which crosses the origin; for later times, the interface is stationary for that 5. Thus, 
for any r < 4, the interface will be at  its stationary position for all points below some 
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particular 6 while, above this point, it will be flat and be moving across the channel 
with a dimensionless velocity sin 8, the y component of the settling velocity of the 
particles. Unlike the case when the aspect ratio is O( l ) ,  however, the characteristics 
which cross the 5 axis do not continue out to infinity but instead attain infinite slopes 
a t  r = 8 and 5 = c,, + 1 ; moreover, as 7 increases beyond 4, c decreases along these 
characteristics (cf. figure 2).  Hence, for 7 > 4, the characteristics which cross the 7 
axis will begin to intersect those which cross the c axis, and, since 8 = r along the 
latter, while 8 = 7-70  along the former, the thickness of the clear-fluid layer will be 
a discontinuous function of x. 

The point of discontinuity first appears a t  5 = 1 and then propagates down the 
vessel with velocity AbZ(7) in the negative x direction. This velocity is determined by 
noting that the differential mass balance (3.1) does not hold a t  the discontinuity, but 
must be replaced by a jump condition obtained from a mass balance in the clear-fluid 
layer about x,, the position of the discontinuity. This balance requires that 

which, since iZ is independent of g, is equivalent to  

where the square brackets denote the difference in the value of the enclosed quantity 
immediately above and below x,. It is seen from the solution of (3.1) that  immediately 
below x, the interface is at its stationary position given by (3.5), evaluated at, c = 6, 
while, immediately above xs, 6(cs,7) = 7. Substituting these results along with the 
definitions of [ and 7 into (3.6),  we obtain 

with initial condition 

Equation (3.7) applies between 7 = 4, when the discontinuity first appears, and 7 = 1 ,  
when the interface above xs reaches the upward-facing surface. This initial-value 
problem was solved numerically and the solution is shown as the dashed line in figure 2. 
We note that cs( 1)  = 0.571 which was confirmed in the experiments described in 5 5 .  
I n  actuality, a singular region with dimensions O(A-4) will surround xs, and the inter- 
face will not exhibit a sharp discontinuity but will undergo instead a smooth but rapid 
change in position over a length comparable to  the spacing of the plates. The behaviour 
above and below this singular region should be well represented by the above analysis, 
however, and the solution of (3.7) should provide a reasonable prediction of the mean 
position of the ‘discontinuity’ in the interface. 

A physical explanation of the unusual behaviour described mathematically by this 
analysis can be obtained by viewing the kinematic condition (2.7) as a mass balance 
over an infinitesimally thin slice of the clear-fluid layer. As mentioned earlier, (2.7) 
shows that to leading order a dimensionless flux of fluid with magnitude sin B always 
crosses the interface into the clear-fluid layer and that this new fluid causes an increase 
in the thickness of the clear-fluid layer (i.e. accumulation), an increase in the flow rate 

d(8) = 1. 
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of pure fluid along this layer, or a combination of these two effects. Furthermore, 
since the clear-fluid layer is very thin relative to its length, the flow rate through it, 
depends, to  leading order, only on its instantaneous local thickness; in fact, the solution 
of the appropriate momentum equations shows that for a batch process the flow rate 
is given by 

(3.8) 
a 3  - J3( 1 - 6)3 cos 6 .  
3 

Suppose that initially the vessel is completely filled with suspension. Since the trans- 
verse component of the bulk velocity vanishes a t  any x where a6/lax = 0 (cf. ( 2 . 4 ~ )  
and (2.5)),  the particles begin to settle away from the wall with dimensionless velocity 
sin 6 ,  the y component of their settling velocity. Hence, initially the flux of fluid across 
the interface is not due to any bulk motion normal to the interface, but instead results 
from the motion of the interface due to the particles settling relative to the bulk (it 
should be remembered that the particle velocity is given by u + e ,  where e is a unit 
vector in the direction of gravity). Therefore, the thickness of the clear-fluid layer 
increases linearlywith time everywhere except near x = 0, where, as alreadyexplained 
in I, 6 must vanish to leading order throughout the process. Thus, near x = 0 the 
interface becomes curved and in this region a transverse bulk flow develops which is 
strong enough to  counterbalance the y component of the particle settling velocity. 
As a result the interface becomes steady near x = 0. We see then that below some 
point, x*(Tj, the interface will be at its steady position while above x* it will be flat 
and moving with velocity sin6 across the vessel. All of the fluid flowing across the 
interface below x*(T)  flows up the clear-fluid layer and is accumulated a t  the top of 
the vessel, whereas, above x*, the production of particle-free fluid is due to the growth 
of the layer in this region. Note that, a t  any instant, the constant thickness of the 
layer above x*(T)  is just sufficient to allow all of the particle-free fluid formed below 
x*(r)  to  flow through this section of the layer and reach the top. Of course, the accumu- 
lation of pure fluid above the suspension leads to an enhanced velocity of the interface 
at the top of the suspension: 

The clear-fluid layer can continue to develop in this manner until T = 4, at  which 
time its thickness is half the width of the vessel for all points above x*($). However, 
as can be seen from (3.8)) the flow rate through the clear-fluid layer is at a maximum 
when 6 = 4. Thus, the region over which the interface is steady cannot lengthen any 
further since if it did so the fluid crossing the interface over this new steady segment 
would also have to flow up the layer, thereby increasing the flow rate past its maximum 
possible value; clearly this is impossible. So the interface must remain flat above x*($) 
and continue to sweep across the vessel with velocity sin 6. But, as 6 increases above 
4, the flow rate through the clear-fluid layer decreases and all of the new particle-free 
fluid formed below x*($) can no longer flow through the layer above ~ “ ( 4 ) ;  i.e. ‘extra’ 
pure fluid must accumulate a t  x*(Q). This ‘extra ’ fluid then causes the point of discon- 
tinuity in the interface, x*(r),  to  move down the vessel as predicted by (3 .7) )  thereby 
further increasing the volume of the clear-fluid layer. 

All that remains now is to determine the motion of the interface at  the top of the 
suspension. Although the rate at which particle-free fluid is formed is still that given 
by the PNK theory, the motion of the top of the suspension will be significantly 
different from that predicted by (1 .3)  because the thickness of the clear-fluid layer 
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FIGURE 3. Two possible time sequences for the interface position in high-aspect-ratio vessels 
(time increases left to right). (a)  The interface along the clear-fluid layer above the point of 
discontinuity sweeps all of the way across the vessel before the top of the suspension reaches 
the point of discontinuity. ( b )  The top of the suspension reaches the point of discontinuity before 
the upper portion of the suspension disappears (i.e. before 7 = 1 ) .  

becomes an appreciable fraction of the channel width and, throughout most of the 
process, a large portion of the clear fluid formed accumulates in this layer instead of 
in the region above the suspension. An expression governing the motion of this part 
of the interface can be found by applying the jump condition (3.6) with 8 = 1 above 
the jump and 8 = 7 below. Then, noting that H = xcos8, we obtain 

5 2  dH 
at 3 

- A*- 73( 1 - 7 ) 2  cos2 8. -- - (3.9) 

Comparison of (3.9) with the dimensionless form of (1.3), the corresponding PNK 
result, shows that, due to the accumulation of fluid in the clear-fluid layer, the PNK 
theory substantially overestimates the velocity of the top of the suspension during 
the initial stages of the sedimentation process. 

Equation (3.9) applies between 7 = 0 and either 7 = 1 (at which time the region of 
suspension above x, has swept clear across the vessel) or the value of 7 a t  which the 
top of the suspension has descended to the uppermost point of the steady part of the 
fluid-suspension interface, if this latter condition occurs for 7 < 1. These two distinct 
possibilities are sketched in figure 3. After this time, no further accumulation occurs 
in the clear-fluid layer, but the PNK theory is still inadequate for predicting the motion 
of the top of the suspension because the thickness of the clear-fluid layer will, in 
general, be an appreciable fraction of the width of the channel. I n  fact, the same type 
of arguments used above show thaS H ( t )  is governed by 

b 

dH 1 
-- (3.10) 
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where 

Hence, during this stage of the settling process, the velocity of the top of the suspension 
is greater than predicted by the PNK theory. 

During the course of the experiments described in $ 5 ,  it was observed that, in 
general, the interface does not form a sharp corner a t  the top of the suspension but 
instead is somewhat rounded. The present analysis indicates, however, that this 
broadening of the clear-fl uid layer is confined to a region whose dimensions are com- 
parable to the spacing of the plates and, hence, that it has an O(h-S )  effect on the 
motion of the top interface. Therefore, (3.9) and (3.10) still apply to leading order. 

4. Continuous settling 
As discussed in I, the inclined settling process can be used on a continuous basis by 

adding new suspension with concentration co into the channel while simultaneously 
removing pure fluid and concentrated sediment. In  view of the results of the previous 
section, however, the feasibility of using high-aspect-ratio vessels for continuous 
systems might be open to question because it is far from obvious that steady solutions 
for the flow will exist under all sets of conditions. Fortunately, as we shall see below, 
it is possible to introduce the new suspension and to remove pure fluid in such a way 
as to suppress the transient behaviour described in the previous section and to attain, 
in principle, steady interface shapes for all values of the aspect ratio. 

We begin by noting that, in view of (2 .7)  and (2.8),  the conditions governing a steady 
interface position for continuous settling vessels are given by 

63  - 
+ - 8 3 ( 1 - 6 " ) 3 ~ ~ ~ 8  = xsiri6, (4.1) 

3 

where Q ( x )  has been evaluated by integrating (2.6), while QJ and Q, denote the dimen- 
sionless flow rates a t  which, respectively, pure fluid is removed from the bottom of 
the vessel and suspension of volu.me fraction co is added through the bottom of the 
vessel. We next introduce the rather obvious restriction that new suspension may 
only be added to the channel while pure fluid may only be removed from the channel. 
Therefore each of the two functions 

is a monotonically increasing non-negative function of x, and has a maximum value 
equal to the overall dimensionless volumetric settling capacity of the channel, which 
from the PNK theory and the analysis of I is equal to tan 8 + O(A-4). Moreover, since 
0 < x sin 6 < 1 and 0 < ( 3  - 26") 8 2  < 1 ,  it is possible to construct the details of the feed 
and withdrawal distributions so that a function 6"(x) can clearly be found such that 
(4.1) is satisfied for all 0 < x < sec 6 regardless of the values of 6 and 6. For example, 
the case where all the feed is introduced below xc, cf. (3.3),  and all the pure fluid is 
withdrawn through the top of the channel is one surh possibility leading to steady 



496 E. Herbolzheimer and A .  Acrivos 

solutions. Here, as seen from (2.8), the resulting increase in the flow through the clear- 
Auid layer is sufficient to accommodate all of the fluid produced below any point x. 
Another possible steady flow regime occurs where the feed is introduced at  the top 
of the vessel and the pure fluid is removed below x,. Actually, if all or some of the 
fluid is removed through the bottom of the vessel at x = 0, i.e. if Qf  > 0,  then we see 
from (4.1) evaluated at  x = 0 that &O) = 1.  In other words, the thickness of the 
suspension layer vanishes at x = 0 and the clear-fluid layer extends clear across the 
vessel. 

On the other hand, if all the feed and withdrawals are located at  the top of the 
vessel, then for all 0 < x < sec B the first two terms on the left-hand side of (4.1) vanish 
and steady solutions exist only if sec B > x, (i.e. only if 6 < (192 tan Bsec t?)*). Whether 
or not other feed and withdrawal distributions will result in steady interface shapes 
can be determined, of course, by solving (4.1). 

Let us consider briefly the special case when 6 is greater than (192 tan 6 sec 0); and 
when all of the suspension feed and the pure-fluid withdrawals are located at  the top 
end of the suspension, i.e. at  x = sec 0.  Then, 8(x) is given by (3.2) and, interestingly, 
two steady solutions are possible: In the first solution, the thickness of the clear-jluid 
layer vanishes at  the bottom of the vessel and then grows with x, as is always observed 
in batch settling experiments, whereas, in the second solution, the thickness of the 
suspension layer vanishes at the bottom of the vessel and then grows with x. This 
existence of two steady solutions was first reported by Probstein, Yung & Hicks 
(1977) who developed a model similar to that given here but treated only the case 
Q(x)  = 0. These authors argued that the second mode of operation may be advantageous 
in suppressing the effects of any remixing of the particle-free fluid and suspension 
which might occur if the interface between these regions became unstable. Indeed, 
this improved settler efficiency was observed by Probstein & Hicks (1 978) who experi- 
mentally established the second flow regime in O( 1)  aspect-ratio channels.? Of course, 
the conditions in the singular regions at  the ends of the suspension region and the 
relative stability of the two flow patterns will determine which regime is actually 
observed for a given settler configuration. For example, one condition which must be 
satisfied if the second mode of operation is to persist is that the thickness of the sus- 
pension layer must vanish before the bottom of the channel is reached. If this restric- 
tion is not met, the suspension will quickly fill the vessel and the flow pattern will 
evolve into that of the first regime. Since it is almost impossible to establish initial 
conditions in a batch process so that the requirement described above is satisfied 
throughout the duration of the settling process, it is not surprising that the second 
flow regime is observed in continuous systems only. 

5. Experimental observations 
Since, to our knowledge, all previous investigations have been restricted to channels 

with relatively small or moderate aspect ratios so that the discontinuous behaviour 
of the interface predicted theoretically by the analysis of tj 3 has never been observed 

t In O(1) aspect-ratio channels, this flowcorresponds to a thin suspension layer flowing rapidly 
down the upward-facing surface with the dimensions of the pure-fluid region being O( 1). This 
flow can then be described mathematically by means of an analysis similar to that in I ;  the 
details are given in Herbolzheimer (1 980). 
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experimentally, a series of experiments was conducted in a vessel with parallel flat 
walls and high aspect ratio so that this prediction could be tested. The channel was 
125 cm long, 4 cm wide, and b, the spacing between the plates, was 1 cm. The sus- 
pension was composed of close-sized spherical glass beads with mean diameter 137 pm 
and density 2.42gml-l while the suspending fluid was a Newtonian oil mixture 
with density 0.992 g ml-l and viscosity 0.677 P a t  21.6 "C, the nominal temperature 
of the experiments. The latter were conducted by adding the desired amount of beads 
and fluid to  the vessel, mixing the suspension for several minutes with a plunger-type 
stirring rod to render the initial concentration distribution nearly uniform, removing 
the stirring rod, and then quickly tilting the vessel from the vertical to the desired 
angle of inclination. This procedure was adopted in order to closely approximate the 
initial conditions used in the theory: namely, that the channel was completely filled 
with suspension a t  t = 0 (i.e. b(x, 0) = 0). Detailed observations of the flow field were 
made for the following range of the parameters: 

Ho M 90 ern, 

so that 1-7  x lo7 < A, c 3.5 x 107, 1.8 c R, c 2.1, and 2.4 c 6 c 3.5. The particle 
concentrations were kept small because, otherwise, a longer vessel would have been 
needed in order to  observe the discontinuity. 

The qualitative features of the flow were identical for all of the conditions investi- 
gated. Initially, the suspension was quiescent, but, as the particles began to settle 
away from the wall (i.e. as the clear-fluid layer began to develop), a rapid motion set 
in within the clear-fluid layer and within the suspension, where the particle motion 
was essentially parallel to the walls of the channel. When 6(x,  t ) ,  the thickness of the 
clear-fluid layer was less than half the spacing between the plates, the velocity close 
to the interface was positive, i.e. directed up the channel, but, as the upward-facing 
surface was approached for a fixed value of x, the velocity vanished and then became 
large again but negative. On the other hand, for any value of z where S(x, t )  M hb, the 
longitudinal velocity vanished at the interface and was negative within the suspension 
region. Finally, if 6(x,  t )  exceeded i b ,  the longitudinal velocity a t  the interface was 
also negative. These results are in agreement with the velocity profile predicted in 
5 2. We should also mention that the sediment layer flowed rapidly down the upward- 
facing surface of the channel and that its thickness remained small compared to the 
spacing between the plates throughout the settling process. 

Of course, the most startling prediction of our theoretical analysis for batch pro- 
cesses concerns the evolution with time of the thickness of the clear-fluid layer. By 
using a cathetometer to measure 8(x, t )  as a function of time for several positions along 
the channel, it was indeed confirmed that in the upper portion of the vessel 6 was 
independent of x but increased with time. Although this measurement of the interface 
position was subject to  considerable experimental error, it appeared that the upper 
portion of the interface swept across the channel with a velocity which was a t  least 
close to  v,sin 8, the y component of the particle-settling velocity. The same behaviour 
occurred in the lower portion of the vessel for small t ,  but here the interface attained 
a steady shape after a period of about 0-120 s depending on the value of x and the 
conditions of the experiment. Over this steady portion of the interface, S(x)  increased 
monotonically with x and was vanishingly small a t  x = 0 throughout the process. 
When 6 became equal to about half the spacing between the plates, the predicted 

5" 6 B 6 4 5 O ,  0-01 < co < 0-025, 
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FIGURE 4. The distance, measured along the downward-facing surface of the vessel, from the 
bottom of the vessel to the point of discontinuity in the thickness of the clear-fluid layer, a t  
the instant when the upper portion of the suspension region first disappears, versus l/tan 8 :  
b = 1 cm; co = 0.01 and 0.02. The solid lines are the corresponding theoretical predictions 
obtained from (5.1). 

‘discontinuity’ in 6 as a function of x begin to develop, with S remaining time- 
independent below this point of ‘discontinuity’; in contrast, beyond this point, 6 
was independent of x but continued to  increase with time. Once the ‘discontinuity’ 
appeared, its position continually moved down the channel with time. Of course, as 
would be expected, the thickness of the clear-fluid layer did not undergo a sharp jump 
in the region of the discontinuity, but instead grew rapidly over a distance comparable 
to  the spacing between the plates. This is consistent with the fact that  the point of 
discontinuity is surrounded by a singular region with dimensions O(R-4) in which the 
length scales in both the x and y directions are comparable. 

I n  a typical case, then, approximately the top three-quarters of the suspension 
disappeared (i.e. became settled) after about 2-3 minutes and only a small quasi-steady 
region, which subsequently settled in a manner similar to that in O(1) aspect-ratio 
channels, remained in the bottom fourth of the vessel. Note that, if the vessel had been 
left vertical, more than an  hour would have been required to  settle this same amount 
of suspension. We should emphasize that the top region of the suspension disappeared 
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because the particles settled into the wall and not because the top of the suspension 
travelled down the channel. This top interface did fall with an enhanced velocity, but 
as was predicted by (3.9), this velocity was considerably lower than that which would 
have been expected on the basis of the PNK theory. 

The results so far are all in excellent agreement with the predictions of $ 3 .  The 
only real question remaining is whether or not the theory can quantitatively predict 
the location of the point of discontinuity. Unfortunately, the exact location of the 
discontinuity cannot be discerned for a while after it has developed because, initially, 
the jump in the thickness of the clear-fluid layer at this point is too small to be ob- 
servable. Hence, it was decided to measure instead the location of the point of dis- 
continuity at the instant when the portion of the interface above this point first 
reached the upward-facing wall of the channel. This is actually a more stringent test 
of the theory because it also tests the validity of (3.7), the equation governing the 
motion of the discontinuity. Therefore, if we let d denote the distance (measured 
along the vessel) from the bottom of the channel to the top of the suspension at  this 
instant, we obtain from the numerical solution of (3.7) that d should satisfy 

3 b3 1 co d = 0.571 ;: - - - - 
128 a2 tan B f ( c o )  

(5.1) 

Experimentally measured values of d are plotted in figure 4 as a function of (tan St-’ 
for values of co equal to 0.01 and 0.02. The solid lines are the theoretical predictions 
obtained from (5.1) by using the correlation of Barnea & Mizrahi (1973) to evaluate 
f ( co ) .  Clearly, the agreement is excellent, indicating that, at  least for dilute suspen- 
sions, the theory presented in $9 2 and 3 provides a quantitative as well as qualitative 
understanding of sedimentation in narrow inclined channels. 
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